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SUMMARY

In this paper the general BEM proposed previously by Liao is applied to solve some 2D strongly non-linear
differential equations, even including those whose governing equations and boundary conditions do not contain
any linear terms. It is shown that the proposed general BEM is really valid for general non-linear problems, so
that it can be applied to solve high-dimensional, strongly non-linear problems in engineering.# 1997 by John
Wiley & Sons, Ltd. Int. j. numer. methods fluids 24: 863–873, 1997.
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1. INTRODUCTION

The boundary element method1–4 (BEM) is in principle based on the linear superposition of the
fundamental solution of a linear operator. Nowadays, many researchers5–6 apply the BEM to solve
non-linear problems. The basic idea of the current BEM for nonlinear problems is to move all non-
linear terms to the right-hand side of the equations and then find the corresponding fundamental
solutions of the linear operator remaining on the left-hand side of the equations. In the BEM for non-
linear problems, iteration is necessary and a domain integral term appears.

The above-mentioned BEM for non-linear differential equations has some obvious restrictions.
First of all, it is invalid if nothing is left after moving all non-linear terms of an equation to its right-
hand side, i.e. the equation does not contain any linear terms so that there certainly does not exist a
fundamental solution at all. Secondly, even if a linear operator exists, it may be so simple that it can
not satisfy all boundary conditions. Finally, this linear operator might be so complex that its
fundamental solution is unknown or quite difficult to find. In the first two cases the traditional BEM
for non-linear problems does not work at all. In the last case it is not easy to apply the BEM.

Liao7,8 proposed a new kind of BEM for quite general non-linear differential equations even
including those whose governing equations and boundary conditions do not contain any linear terms
at all. This general BEM can overcome the three above-mentioned restrictions of the traditional BEM
for non-linear problems. It is based on homotopy in topology so that it has a solid mathematical base.
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This general BEM offers great freedom in selecting the linear operator and initial approximation.
Some examples ofone-dimensionalhighly non-linear differential equations are given in References 7
and 8. The high-order BEM formulaes for general governing equations and boundary conditions are
given in Reference 8.

This paper is the continuation of the author’s work described in Reference 8. In this paper the
general BEM proposed by Liao in References 7 and 8 is further applied to solve some 2D strongly
non-linear problems whose governing equation and boundary conditions do not contain any linear
terms at all. The purpose of this paper is to show that the proposed general BEM is really valid for
high-dimensionalstrongly non-linear differential equations.

2. BASIC IDEAS OF THE PROPOSED GENERAL BEM

Consider the non-linear differential equation

A�u� � f �~r�; ~r 2 O; �1�

with boundary conditions

H u;
@u

@n

� �

� 0; ~r 2 G; �2�

whereA is a general differential operator,f �~r� is a known function of the co-ordinates of the point
~r 2 O and H is a function ofu and its derivatives@u=@n on the boundaryG of the domainO. For
simplicity, we defineu0 � @u=@n (on the boundaryG) in this paper.

In References 7 and 8, by means of constructing a homotopy9
v�~r; p� : O� �0; 1� ! R which

satisfies

�1 ÿ p��L�v� ÿ L�u0�� � p�A�v� ÿ f �~r�� � 0; p 2 �0; 1�; ~r 2 O; �3�

with boundary condition
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we obtain afamily of iterative BEM formulae at high order,
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whereL is a properly selectedlinear operator whose fundamental solution is known,u0�~r� is an initial
approximation which can be selected with great freedom,p 2 �0; 1� is an imbedding parameter and
v�~r; p� is now a function of both~r 2 O andp 2 �0; 1�. The term
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is called themth-order deformation derivativeand is determined by the so-calledmth-order
deformation equation

L�v�m�0 � � fm�~r�; ~r 2 O �m � 1; 2; 3; � � ��; �6�

with boundary condition
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where

f1�~r� � f �~r� ÿ A�u0�; �8�
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Note that equation (6) islinear with linear boundary condition (7). Moreover, the linear operatorL
can be properly selected so that its fundamental solution is known. Therefore themth-order
deformation equation (6) under condition (7) can be easily solved by the traditional BEM in the
following way:

c�~r�v�m�0 �~r� �

�

G

�v
�m�
0 B�o� ÿ oB�v�m�0 ��dG�

�

O

fmodO; �12�

whereB is the corresponding boundary operator for the freely selected linear operatorL, o is the
fundamental solution ofL and c�~r� is a known coefficient dependent upon the co-ordinates of the
point ~r. The detailed formulations of the above equations are given in Reference 7 and 8.

After selecting an initial approximationu0�~r�, the termfm�~r� on the right-hand side of equation (6)
is known for eachm �m51�. Note that we now have very great freedom to select the corresponding
linear operatorL, or more precisely, we can now select a proper linear operatorL whose fundamental
solution is known even if the non-linear operatorA under consideration doesnot contain any linear
terms at all. In the special case where the operatorA can be divided into two parts, one linear, the
other non-linear, so thatA �

^L � ^N holds, and moreover,^L is proper and used as the linear operator
whose fundamental solution is^o, then the above-mentioned general BEM formula in caseM � 1
becomes
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which gives
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Let uk�~r� � u�~r� and ~uk�~r� � u�~r� � v
�1�
0 �~r�. The above expression can be rewritten as
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which is exactly the formula of the traditional BEM for non-linear problems. Moreover, if a
relaxation parameterl is introduced into the iteration, we have

uk�1�~r� � uk�~r� � l�~uk�~r� ÿ uk�~r��

� uk�~r� � lv
�1�
0 �~r�;

�16�

which is exactly formula (5) in the caseM � 1! This means that the traditional boundary element
method for non-linear problems is indeed only a special case of the newly proposed boundary
element method, so that our above-mentioned BEM is more general.

Finally we emphasize once again that the operatorA in (1) and the operatorH in (2) are quite
general. All the above-mentioned formulae are valid even if both the operatorA and the operatorH
do not contain any linear terms. This means that the newly proposed boundary element method is still
valid no matter whether or not there exist linear terms in the original governing equation (1) and
boundary condition (2). Therefore it is possible for us to use the newly proposed boundary element
method to solve more non-linear problems with strong non-linearity.

3. NUMERICAL EXAMPLES

In References 7 and 8, we showed that the proposed general BEM is valid for quite highly non-linear
problems. However, the examples given in References 7 and 8 are only one-dimensional and are
generally considered to be not satisfactory. Hence in this paper we apply the proposed general BEM
to solve some 2D non-linear problems in order to show that the general BEM is indeed valid for high-
dimensional non-linear problems.

Example 1

Consider the 2D second-order non-linear differential equation

1
4 ��uxx�

2
� �uyy�

2
� �

1
2 uxuy � eÿ2�x�y�

; x 2 �0; 1�; y 2 �0; 1�; �17�

with boundary conditions

u�x; y� � eÿy
; x � 0; y 2 �0; 1�; �18�

@u�x; y�

@n
� eÿx

; x 2 �0; 1�; y � 0; �19�

u�x; y� �
@u�x; y�

@n
� 0; x � 1; y 2 �0; 1�; �20�

u�x; y� cos
@u�x; y�

@n

� �

�

@u�x; y�

@n
cos�u�x; y�� � 0; x 2 �0; 1�; y � 1: �21�

It should be emphasized that the governing equation (17) does not contain any linear terms at all so
that the traditional BEM is invalid. Note that (18) is a Dirichlet-type condition, (19) is a Neumann-
type condition, (20) is a mixed-type condition and (21) is a condition which does not contain any
linear terms. Note also thatu�x; y� � exp�ÿx ÿ y� is one of the solutions of the above problem so that
we can compare our numerical approximation with it.
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For all examples considered in this paper, we use the 2D Laplace operator

L�u� �
@

2u

@x2
�

@

2u

@y2
�22�

as the linear operator. For simplicity we always useu0�x; y� � 0 as the initial approximation. For the
numerical domain integral we divide the domainO � �0; 1� � �0; 1� into NO � NO equal subdomains
and each boundary intoNG equal elements in which the unknowns are linearly distributed. At each
corner, two very close points on different boundaries are used to treat the discontinuity of the
unknowns at corners. Throughout this paper we useNO � NG � 40. In order to check whether
iteration procedures converge or not, we investigate the following two kinds of root-mean-square
errors:
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Figure 1. Errors of solution (RMS1 defined by (23)) versus iterative time for Examples 1–3

Figure 2. Errors of solution (RMS2 defined by (24)) versus iterative time for Examples 1–3
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We simply apply the first-order (M � 1) expression (5) as our iterative formula and usel � 1 as
the iterative parameter. The iteration converges quickly to the exact solutionexp�ÿx ÿ y�, as shown
in Figures 1 and 2. We should emphasize that the governing equation (17) doesnot contain any linear
terms so that the traditional BEM is invalid for it. However, the proposed general BEM works quite
well. This example illustrates that the general BEM is indeed valid for high-dimensional non-linear
problems whose governing equation does not contain any linear terms.

Example 2

In the second example we consider again the same governing equation (17) but with more complex
non-linear boundary conditions

u cos
@u

@n

� �

ÿ

@u

@n
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� �
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�
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�
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@u
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We should emphasize that both the governing equation (17) and all four boundary conditions (25)–
(28) donotcontain any linear terms at all! Note also thatu�x; y� � exp�ÿx ÿ y� is one of the solutions
of the above problem too.

We simply use the first-order (M � 1) expression (5) as our iterative formula and usel � 1 as the
iterative parameter. Once again we obtain a numerical result which converges to the exact solution
exp�ÿx ÿ y�. The corresponding errors versus iterative times are shown in Figures 1 and 2. This
example indicates that the proposed general BEM is valid even for those non-linear problems whose
governing equations and boundary conditions donot contain any linear terms at all!

Example 3

Finally, we consider the more complex non-linear differential equation

1
4 ��uxx�

2
� �uyy�

2
� �

1
2 uxuy � ln

1 � sin2
�uxxuyy� � cos2

�uxuy�

2

 !

� aeÿ2�x�y�
;

x 2 �0; 1�; y 2 �0; 1�; a 2 �0;1�; �29�

with the same boundary conditions (25)–(28). Note that both the governing equation and boundary
conditions do not contain any linear terms. In particular the governing equation (29) contains
trigonometric and logarithmic functions of the non-linear expressions of the unknownu�x; y�, so that
the non-linearity of the governing equation (29) is quite high.

In the casea � 1, the real functionexp�ÿx ÿ y� is one of the solutions of the third example. In the
casea � 1 we simply apply the first-order (M � 1) expression (5) as our iterative formula and use
l � 1 as the iterative parameter. Once again, we successfully obtain a numerical result which
converges to the exact solutionexp�ÿx ÿ y�, as shown in Figures 1 and 2. The numerical results ofu
and@u=@n on the four boundaries agree quite well with the corresponding values of the exact solution,
as shown in Figures 3 and 4. Note that we useu0�x; y� � 0 as the initial approximation. This example
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indicates that the proposed general BEM is valid even for quite complex, highly non-linear
differential equations with quite complex non-linear boundary conditions. Note that both the
governing equation and boundary conditions of the third example do not contain any linear terms.

In the casea 6� 1 we also obtain convergent numerical results which are different from
exp�ÿx ÿ y�, as shown in Figures 5–8. The numerical parameters for the third example are given in
Table I. We apply both the first-order (M � 1) and second-order (M � 2) iterative formulae of (5).
We find that if the second-order iterative formula (M � 2) converges under a value ofl � m, then it

Figure 3. Comparison of numerical results on boundaries with corresponding exact solution of Example 3 in casea�1: curve
1, u on boundaryx 2 �0; 1�; y � 1; curve 2,u on boundaryx 2 �0; 1�; y � 0; curve 3@u=@n on boundaryx 2 �0; 1�; y � 0; curve

4, ÿ@u=@n on boundaryx 2 �0; 1�; y � 0; crosses, corresponding values of exact solution

Figure 4. Comparison of numerical results on boundaries with corresponding exact solution of Example 3 in casea�1: curve
1, u on boundaryy 2 �0; 1�; x � 1; curve 2,u on boundaryy 2 �0; 1�; x � 0; curve 3@u=@n on boundaryx 2 �0; 1�; x � 1; curve

4, ÿ@u=@n on boundaryy 2 �0; 1�; x � 0; crosses, corresponding values of exact solution
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converges faster than by the first-order formula (M � 1) under the same value ofl � m. Moreover, if
the iteration converges under a value ofl � m1, then the same iterative formula under a value of
l � m2 < m1 converges more slowly. In Reference 8, we show similar results for one-dimensional
examples.

It should be emphasized that onlyone linear operator, i.e. the 2D Laplace operator, and its
corresponding fundamental solution are used forall the above quite different non-linear problems.
This is very interesting and deserves further research in detail. It seems that a fairly general BEM
computer programme might be developed to solve a large number of quite different sorts of high-
dimensional strongly non-linear problems in engineering, especially when the proposed general BEM
is combined with the well-established dual reciprocity method that can transform the domain integral
into the surface so that much less CPU capacity is necessary.

Figure 5. Solution of Example 3 in casea � 0�5

Figure 6. Solution of Example 3 in casea � 10
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Figure 7. Solution of Example 3 in casea � 100

Figure 8. Solution of Example 3 in casea � 250

Table I. Numerical parameters
used for Example 3

a l

0 0�10
0�5 0�25
5 0�50

10 0�50
50 0�25

100 0�25
250 0�10
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4. CONCLUSIONS AND DISCUSSION

In this paper the general boundary element method for strongly non-linear problems proposed by
Liao7,8 is proved to be valid for quite complex, strongly non-linear 2D differential equations, even
including those whose governing equations and boundary conditions donot contain any linear terms
at all. Based on these examples, we have many reasons to believe that the proposed general BEM can
be applied to solve high-dimensional strongly non-linear problems in engineering. Note that the
proposed general BEM has been successfully applied to solve viscous flows governed by the N–S
equations,5,10 the non-linear heat transfer of inhomogeneous materials, etc.

It should be emphasized that we use the 2D Laplace operator as the linear operator for all three
quite different non-linear problems under consideration. This is very interesting. It implies that a
general BEM software for different types of strongly non-linear problems might be developed,
because a simple linear operator whose fundamental solution is known might be used for a large
number of quite different types of non-linear differential equations, as illustrated in this paper.

From the theoretical viewpoint it seems that the proposed general BEM might overcome nearly all
restrictions of the traditional BEM for non-linear problems and could be applied to solve reasonable
non-linear differential equations. However, as in the traditional BEM for non-linear problems, the
domain integral term appears in the general BEM, which decreases greatly the effectiveness of the
proposed general BEM. There might exist two ways to overcome this disadvantage of the proposed
general BEM. One is to use a vector supercomputer, because the parallel process is especially simple
and quite effective for the integral. The other is to apply the so-called dual reciprocity method11

which was developed to increase the effectiveness of the traditional BEM for non-linear problems by
means of transforming the domain integral onto the surface. Both deserve further researches in detail.

Finally we would like to point out that the general BEM proposed in References 7 and 8 has a solid
mathematical base. In fact, it is only a simple application of a newly proposed non-linear analytical
technique, the homotopy analysis method,12,13which is based on homotopy in topology and has been
successfully applied to solve many non-linear problems. The author has even applied the homotopy
analysis method to obtain some wonderful results in pure mathematics, such as the generalized
Newtonian binomial theorem about�1 � t�a for fractional and negative exponents which has been
rigorously proved to be valid even in the regiont 2 �ÿ1;1) and the generalized Taylor formula
which can give a family of power series of a real functionf �t� whose convergence radius can be much
greater than that of the traditional Taylor series off �t�. All these results give us confidence to believe
the reasonableness of both the homotopy analysis method12,13 and the general boundary element
method.7,8

REFERENCES

1. C. A. Brebbia,The Boundary Element Method for Engineers, Pentech, London, 1980.
2. C. A. Brebbia and J. J. Connor,Advances in Boundary Elements 1: Computations and Fundamentals, Computational

Mechanics Publications, Southampton, 1989.
3. C. A. Brebbia,Boundary Elements X, Vol. 1, Mathematical and Computational Aspects, Computational Mechanics

Publications, Southampton, 1988.
4. I. Herrera,Boundary Methods—An Algebraic Theory, Pitman, Boston, MA, 1984.
5. S. J. Liao, ‘Higher-order streamfunction-vorticity formulation of 2D steady-state Navier–Stokes equations’,Int. j. numer.

methods fluids, 15, 595–612 (1992).
6. N. Tosaka and K. Kakuda, ‘The generalized BEM for non-linear problems’, in C. A. Brebbia (ed.),Boundary Elements X,

Vol. 1, Mathematical and Computational Aspects, Computational Mechanics Publications, Southampton, 1988, pp. 1–17.
7. S. J. Liao, ‘The quite general BEM for strongly non-linear problems’, in C. A. Brebbia (ed.),Boundary Elements XVIII,

Computational Mechanics Publications, Southampton, 1995, pp. 67–74.
8. S. J. Liao, ‘High-order BEM formulations for strongly non-linear problems governed by quite general non-linear

differential operators’,Int. j. numer. methods fluids, 23, 739–751 (1996).
9. R. Brown R,Topology: A General Account of General Topology, Homotopy Types and the Fundamental Groupoid, Wiley,

New York, 1988.

872 S.-J. LIAO

INT. J. NUMER. METHODS FLUIDS, VOL.24: 863–873 (1997) # 1997 by John Wiley & Sons, Ltd.



10. S. J. Liao and J. M. Zhu, ‘A short note on the high-order streamfunction-vorticity formulations of 2D steady-state Navier-
Stokes equations’,Int. j. numer. methods fluids, 22, 1–9 (1996).

11. P W. Partridge, ‘New developments in the dual reciprocity method’, in C. A. Brebbia, Kim, Osswald and Power (eds),
Boundary Elements XVII, Computational Mechanics Publications, Southampton, 1005, pp. 11–18.

12. S. J. Liao, ‘A kind of linearity-invariance under homotopy and some simple applications of it in mechanics’,Rep. 520,
Institute of Shipbuilding, University of Hamburg, 1992.

13. S. J. Liao, ‘An approximate solution technique not depending on small parameters: a special example’,Int. J. Nonlinear
Mech.,30, 371–380 (1995).

BEM FORMULATIONS FOR STRONGLY NON-LINEAR PROBLEMS. 2 873


